Serveur d'exploration sur la mycorhize

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using microbial seed coating for improving cowpea productivity under a low-input agricultural system.

Identifieur interne : 000014 ( Main/Exploration ); précédent : 000013; suivant : 000015

Using microbial seed coating for improving cowpea productivity under a low-input agricultural system.

Auteurs : Inês Rocha [Portugal] ; Pablo Souza-Alonso [Portugal] ; Graça Pereira [Portugal] ; Ying Ma [Portugal] ; Miroslav Vosátka [République tchèque] ; Helena Freitas [Portugal] ; Rui S. Oliveira [Portugal]

Source :

RBID : pubmed:31667839

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plant-growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal (AM) fungi have the ability to enhance the growth, fitness, and quality of various agricultural crops, including cowpea. However, field trials confirming the benefits of microbes in large-scale applications using economically viable and efficient inoculation methods are still scarce. Microbial seed coating has a great potential for large-scale agriculture through the application of reduced amounts of PGPR and AM fungi inocula. Thus, in this study, the impact of seed coating with PGPR, Pseudomonas libanensis TR1 and AM fungus, Rhizophagus irregularis (single or multiple isolates) on grain yield and nutrient content of cowpea under low-input field conditions was evaluated.

RESULTS

Seed coating with P. libanensis + multiple isolates of R. irregularis (coatPMR) resulted in significant increases in shoot dry weight (76%), and in the number of pods and seeds per plant (52% and 56%, respectively) and grain yield (56%), when compared with non-inoculated control plants. However, seed coating with P. libanensis + R. irregularis single-isolate (coatPR) did not influence cowpea grain yield. Grain lipid content was significantly higher (25%) in coatPMR plants in comparison with control. Higher soil organic matter and lower pH were observed in the coatPMR treatment.

CONCLUSIONS

Our findings indicate that cowpea field productivity can be improved by seed coating with PGPR and multiple AM fungal isolates under low-input agricultural systems. © 2019 Society of Chemical Industry.


DOI: 10.1002/jsfa.10117
PubMed: 31667839


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using microbial seed coating for improving cowpea productivity under a low-input agricultural system.</title>
<author>
<name sortKey="Rocha, Ines" sort="Rocha, Ines" uniqKey="Rocha I" first="Inês" last="Rocha">Inês Rocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Souza Alonso, Pablo" sort="Souza Alonso, Pablo" uniqKey="Souza Alonso P" first="Pablo" last="Souza-Alonso">Pablo Souza-Alonso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Graca" sort="Pereira, Graca" uniqKey="Pereira G" first="Graça" last="Pereira">Graça Pereira</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology and Genetic Resources Unit, National Institute for Agrarian and Veterinary Research, Elvas, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Biotechnology and Genetic Resources Unit, National Institute for Agrarian and Veterinary Research, Elvas</wicri:regionArea>
<wicri:noRegion>Elvas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Ying" sort="Ma, Ying" uniqKey="Ma Y" first="Ying" last="Ma">Ying Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vosatka, Miroslav" sort="Vosatka, Miroslav" uniqKey="Vosatka M" first="Miroslav" last="Vosátka">Miroslav Vosátka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Czech Academy of Sciences, Institute of Botany, Průhonice</wicri:regionArea>
<wicri:noRegion>Průhonice</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Freitas, Helena" sort="Freitas, Helena" uniqKey="Freitas H" first="Helena" last="Freitas">Helena Freitas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oliveira, Rui S" sort="Oliveira, Rui S" uniqKey="Oliveira R" first="Rui S" last="Oliveira">Rui S. Oliveira</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31667839</idno>
<idno type="pmid">31667839</idno>
<idno type="doi">10.1002/jsfa.10117</idno>
<idno type="wicri:Area/Main/Corpus">000272</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000272</idno>
<idno type="wicri:Area/Main/Curation">000272</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000272</idno>
<idno type="wicri:Area/Main/Exploration">000272</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using microbial seed coating for improving cowpea productivity under a low-input agricultural system.</title>
<author>
<name sortKey="Rocha, Ines" sort="Rocha, Ines" uniqKey="Rocha I" first="Inês" last="Rocha">Inês Rocha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Souza Alonso, Pablo" sort="Souza Alonso, Pablo" uniqKey="Souza Alonso P" first="Pablo" last="Souza-Alonso">Pablo Souza-Alonso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Graca" sort="Pereira, Graca" uniqKey="Pereira G" first="Graça" last="Pereira">Graça Pereira</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology and Genetic Resources Unit, National Institute for Agrarian and Veterinary Research, Elvas, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Biotechnology and Genetic Resources Unit, National Institute for Agrarian and Veterinary Research, Elvas</wicri:regionArea>
<wicri:noRegion>Elvas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Ying" sort="Ma, Ying" uniqKey="Ma Y" first="Ying" last="Ma">Ying Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vosatka, Miroslav" sort="Vosatka, Miroslav" uniqKey="Vosatka M" first="Miroslav" last="Vosátka">Miroslav Vosátka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.</nlm:affiliation>
<country xml:lang="fr">République tchèque</country>
<wicri:regionArea>Czech Academy of Sciences, Institute of Botany, Průhonice</wicri:regionArea>
<wicri:noRegion>Průhonice</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Freitas, Helena" sort="Freitas, Helena" uniqKey="Freitas H" first="Helena" last="Freitas">Helena Freitas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Oliveira, Rui S" sort="Oliveira, Rui S" uniqKey="Oliveira R" first="Rui S" last="Oliveira">Rui S. Oliveira</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</nlm:affiliation>
<country xml:lang="fr">Portugal</country>
<wicri:regionArea>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra</wicri:regionArea>
<wicri:noRegion>Coimbra</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the science of food and agriculture</title>
<idno type="eISSN">1097-0010</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crop Production (methods)</term>
<term>Glomeromycota (physiology)</term>
<term>Mycorrhizae (physiology)</term>
<term>Pseudomonas (physiology)</term>
<term>Seeds (growth & development)</term>
<term>Seeds (microbiology)</term>
<term>Soil (chemistry)</term>
<term>Vigna (growth & development)</term>
<term>Vigna (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glomeromycota (physiologie)</term>
<term>Graines (croissance et développement)</term>
<term>Graines (microbiologie)</term>
<term>Mycorhizes (physiologie)</term>
<term>Production végétale (méthodes)</term>
<term>Pseudomonas (physiologie)</term>
<term>Sol (composition chimique)</term>
<term>Vigna (croissance et développement)</term>
<term>Vigna (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Graines</term>
<term>Vigna</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Seeds</term>
<term>Vigna</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Crop Production</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Graines</term>
<term>Vigna</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Seeds</term>
<term>Vigna</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Production végétale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glomeromycota</term>
<term>Mycorhizes</term>
<term>Pseudomonas</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Glomeromycota</term>
<term>Mycorrhizae</term>
<term>Pseudomonas</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plant-growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal (AM) fungi have the ability to enhance the growth, fitness, and quality of various agricultural crops, including cowpea. However, field trials confirming the benefits of microbes in large-scale applications using economically viable and efficient inoculation methods are still scarce. Microbial seed coating has a great potential for large-scale agriculture through the application of reduced amounts of PGPR and AM fungi inocula. Thus, in this study, the impact of seed coating with PGPR, Pseudomonas libanensis TR1 and AM fungus, Rhizophagus irregularis (single or multiple isolates) on grain yield and nutrient content of cowpea under low-input field conditions was evaluated.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Seed coating with P. libanensis + multiple isolates of R. irregularis (coatPMR) resulted in significant increases in shoot dry weight (76%), and in the number of pods and seeds per plant (52% and 56%, respectively) and grain yield (56%), when compared with non-inoculated control plants. However, seed coating with P. libanensis + R. irregularis single-isolate (coatPR) did not influence cowpea grain yield. Grain lipid content was significantly higher (25%) in coatPMR plants in comparison with control. Higher soil organic matter and lower pH were observed in the coatPMR treatment.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our findings indicate that cowpea field productivity can be improved by seed coating with PGPR and multiple AM fungal isolates under low-input agricultural systems. © 2019 Society of Chemical Industry.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31667839</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>01</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0010</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>100</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the science of food and agriculture</Title>
<ISOAbbreviation>J Sci Food Agric</ISOAbbreviation>
</Journal>
<ArticleTitle>Using microbial seed coating for improving cowpea productivity under a low-input agricultural system.</ArticleTitle>
<Pagination>
<MedlinePgn>1092-1098</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jsfa.10117</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plant-growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal (AM) fungi have the ability to enhance the growth, fitness, and quality of various agricultural crops, including cowpea. However, field trials confirming the benefits of microbes in large-scale applications using economically viable and efficient inoculation methods are still scarce. Microbial seed coating has a great potential for large-scale agriculture through the application of reduced amounts of PGPR and AM fungi inocula. Thus, in this study, the impact of seed coating with PGPR, Pseudomonas libanensis TR1 and AM fungus, Rhizophagus irregularis (single or multiple isolates) on grain yield and nutrient content of cowpea under low-input field conditions was evaluated.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Seed coating with P. libanensis + multiple isolates of R. irregularis (coatPMR) resulted in significant increases in shoot dry weight (76%), and in the number of pods and seeds per plant (52% and 56%, respectively) and grain yield (56%), when compared with non-inoculated control plants. However, seed coating with P. libanensis + R. irregularis single-isolate (coatPR) did not influence cowpea grain yield. Grain lipid content was significantly higher (25%) in coatPMR plants in comparison with control. Higher soil organic matter and lower pH were observed in the coatPMR treatment.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our findings indicate that cowpea field productivity can be improved by seed coating with PGPR and multiple AM fungal isolates under low-input agricultural systems. © 2019 Society of Chemical Industry.</AbstractText>
<CopyrightInformation>© 2019 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rocha</LastName>
<ForeName>Inês</ForeName>
<Initials>I</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-3380-602X</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Souza-Alonso</LastName>
<ForeName>Pablo</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pereira</LastName>
<ForeName>Graça</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology and Genetic Resources Unit, National Institute for Agrarian and Veterinary Research, Elvas, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vosátka</LastName>
<ForeName>Miroslav</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Freitas</LastName>
<ForeName>Helena</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Oliveira</LastName>
<ForeName>Rui S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Centre for Functional Ecology - Science for People and the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>POCI-01-0145-FEDER-016801</GrantID>
<Agency>Fundação para a Ciência e a Tecnologia</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>PTDC/AGR-TEC/1140/2014</GrantID>
<Agency>Fundação para a Ciência e a Tecnologia</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>SFRH/BD/100484/2014</GrantID>
<Agency>Fundação para a Ciência e a Tecnologia</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>European Social Fund</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Foundation for Science and Technology</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Sci Food Agric</MedlineTA>
<NlmUniqueID>0376334</NlmUniqueID>
<ISSNLinking>0022-5142</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000069599" MajorTopicYN="N">Crop Production</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055137" MajorTopicYN="N">Glomeromycota</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011549" MajorTopicYN="N">Pseudomonas</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070658" MajorTopicYN="N">Vigna</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">agricultural sustainability</Keyword>
<Keyword MajorTopicYN="N">arbuscular mycorrhizal fungi</Keyword>
<Keyword MajorTopicYN="N">field experiment</Keyword>
<Keyword MajorTopicYN="N">plant growth promoting rhizobacteria</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31667839</ArticleId>
<ArticleId IdType="doi">10.1002/jsfa.10117</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>More people FAO and food m, in Worse Water?: A Global Review of Water Pollution from Agriculture, ed. by Mateo-Sagasta J, Zadeh SM, Turral H and Rome I. International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE), FAO Colombo, Sri Lanka (2018).</Citation>
</Reference>
<Reference>
<Citation>Patil S, Reidsma P, Shah P, Purushothaman S and Wolf J, Comparing conventional and organic agriculture in Karnataka, India: where and when can organic farming be sustainable? Land Use Policy 37:40-51 (2014).</Citation>
</Reference>
<Reference>
<Citation>Crowder DW, Northfield TD, Strand MR and Snyder WE, Organic agriculture promotes evenness and natural pest control. Nature 466:109-112 (2010).</Citation>
</Reference>
<Reference>
<Citation>Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH and Brussaard L, Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91:460-473 (2010).</Citation>
</Reference>
<Reference>
<Citation>Pellegrino E and Bedini S, Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429-439 (2014).</Citation>
</Reference>
<Reference>
<Citation>Reganold JP and Wachter JM, Organic agriculture in the twenty-first century. Nat Plants 2:15221(2016).</Citation>
</Reference>
<Reference>
<Citation>Gliessman SR, Agroecology and agroecosystems, in The Earthscan Reader in Sustainable Agriculture, ed. by Pretty J. CRC Press, Boca Raton, pp. 104-114 (2005).</Citation>
</Reference>
<Reference>
<Citation>Royal Society of London. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture (2009).</Citation>
</Reference>
<Reference>
<Citation>Nadeem SM, Ahmad M, Zahir ZA, Javaid A and Ashraf M, The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429-448 (2014).</Citation>
</Reference>
<Reference>
<Citation>Baum C, El-Tohamy W and Gruda N, Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131-141 (2015).</Citation>
</Reference>
<Reference>
<Citation>Khan MS, Zaidi A and Musarrat J, Microbes for Legume Improvement. Springer, Vienna (2010).</Citation>
</Reference>
<Reference>
<Citation>Sindhu SS, Dua S, Verma MK and Khandelwal A, Growth promotion of legumes by inoculation of rhizosphere bacteria, in Microbes for Legume Improvement, ed. by Khan MS, Musarrat J and Zaidi A. Springer, Vienna, pp. 195-235 (2010).</Citation>
</Reference>
<Reference>
<Citation>Malusà E, Pinzari F and Canfora L, Efficacy of biofertilizers: challenges to improve crop production, in Microbial Inoculants in Sustainable Agricultural Productivity, ed. by Singh DP, Singh HB and Prabha R. Springer, New Delhi, pp. 17-40 (2016).</Citation>
</Reference>
<Reference>
<Citation>Singh DP, Singh HB and Prabha R eds, Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New York (2016).</Citation>
</Reference>
<Reference>
<Citation>Timko MP and Singh BB, Cowpea, a multifunctional legume, in Genomics of Tropical Crop Plants, ed. by Moore PH and Ming R. Springer, New York, pp. 227-258 (2008).</Citation>
</Reference>
<Reference>
<Citation>Gonçalves A, Goufo P, Barros A, Domínguez-Perles R, Trindade H, Rosa EA et al., Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable Agri-food system: nutritional advantages and constraints. J Sci Food Agric 96:2941-2951 (2016).</Citation>
</Reference>
<Reference>
<Citation>Da Silva AC, da Costa Santos D, Junior DLT, da Silva PB, dos Santos RC and Siviero A, Cowpea: a strategic legume species for Food security and health, in Legume Seed Nutraceutical Research, ed. by Jimenez-Lopez J and Clemente A. IntechOpen, London (2018) Available: https://www.intechopen.com/books/legume-seed-nutraceutical-research/cowpea-a-strategic-legume-species-for-food-security-and-health.</Citation>
</Reference>
<Reference>
<Citation>Andrade MMM, Stamford NP, Santos CER, Freitas ADS, Sousa CA and Junior MAL, Effects of biofertilizer with diazotrophic bacteria and mycorrhizal fungi in soil attribute, cowpea nodulation yield and nutrient uptake in field conditions. Sci Hortic 162:374-379 (2013).</Citation>
</Reference>
<Reference>
<Citation>Oliveira RS, Carvalho P, Marques G, Ferreira L, Pereira S, Nunes M et al., Improved grain yield of cowpea (Vigna unguiculata) under water deficit after inoculation with Bradyrhizobium elkanii and Rhizophagus irregularis. Crop Pasture Sci 68:1052-1059 (2017).</Citation>
</Reference>
<Reference>
<Citation>Vosátka M, Látr A, Gianinazzi S and Albrechtová J, Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29-37 (2012).</Citation>
</Reference>
<Reference>
<Citation>O'Callaghan M, Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729-5746 (2016).</Citation>
</Reference>
<Reference>
<Citation>Ma Y, Látr A, Rocha I, Freitas H, Vosátka M and Oliveira RS, Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy 9:33 (2019).</Citation>
</Reference>
<Reference>
<Citation>Rocha I, Ma Y, Vosátka M, Freitas H and Oliveira RS, Growth and nutrition of cowpea (Vigna unguiculata) under water deficit as influenced by microbial inoculation via seed coating. J Agron Crop Sci 205:447-459 (2019).</Citation>
</Reference>
<Reference>
<Citation>Colla G, Rouphael Y, Bonini P and Cardarelli M, Coating seeds with endophytic fungi enhances growth, nutrient uptake, yield and grain quality of winter wheat. Int J Plant Prod 9:171-190 (2015).</Citation>
</Reference>
<Reference>
<Citation>Cely MV, de Oliveira AG, de Freitas VF, de Luca MB, Barazetti AR, dos Santos IM et al., Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front Microbiol 7:720 (2016).</Citation>
</Reference>
<Reference>
<Citation>Oliveira RS, Rocha I, Ma Y, Vosátka M and Freitas H, Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.). J Toxicol Environ Health Part A 7I9:329-337 (2016).</Citation>
</Reference>
<Reference>
<Citation>Rocha I, Ma Y, Carvalho MF, Magalhães C, Janoušková M, Vosátka M et al., Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilization regimes. Arch Agron Soil Sci 65:31-43 (2019).</Citation>
</Reference>
<Reference>
<Citation>Ryan MH and Graham JH, Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092-1107 (2018).</Citation>
</Reference>
<Reference>
<Citation>Thirkell TJ, Charters MD, Elliott AJ, Sait SM and Field KJ, Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921-929 (2017).</Citation>
</Reference>
<Reference>
<Citation>Ma Y, Rajkumar M, Zhang C and Freitas H, Inoculation of brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36-44 (2016).</Citation>
</Reference>
<Reference>
<Citation>Scott JM, Hill CB and Jessop RS, Growth chamber study of phosphorus applied as drilled granules or as seed coatings to wheat sown in soils differing in P-sorption capacity. Fertil Res 29:281-287 (1991).</Citation>
</Reference>
<Reference>
<Citation>Porter W, The “most probable number” method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515-519 (1979).</Citation>
</Reference>
<Reference>
<Citation>Phillips JM and Hayman DS, Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158-161 (1970).</Citation>
</Reference>
<Reference>
<Citation>Oliveira RS, Vosátka M, Dodd JC and Castro PM, Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment. Mycorrhiza 16:23-31 (2005).</Citation>
</Reference>
<Reference>
<Citation>Giovannetti M and Mosse B, An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489-500 (1980).</Citation>
</Reference>
<Reference>
<Citation>Muyzer G, de Waal EC and Uitterlinden AG, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis and polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb 59:695-700 (1993).</Citation>
</Reference>
<Reference>
<Citation>Agaras B and Valverde CA, Novel oligonucleotide pair for genotyping members of the Pseudomonas genus by single-round PCR amplification of the gyrB gene. Methods Protoc 1:24 (2018).</Citation>
</Reference>
<Reference>
<Citation>Dastager SG, Deepa CK and Pandey A, Plant growth promoting potential of Pontibacter niistensis in cowpea (Vigna unguiculata (L.) Walp.). Appl Soil Ecol 49:250-255 (2011).</Citation>
</Reference>
<Reference>
<Citation>Omirou M, Fasoula DA and Ioannides IM, Bradyrhizobium inoculation alters indigenous AMF community assemblages and interacts positively with AMF inoculum to improve cowpea performance. Appl Soil Ecol 108:381-389 (2016).</Citation>
</Reference>
<Reference>
<Citation>Oruru MB, Njeru EM, Pasquet R and Runo S, Response of a wild-type and modern cowpea cultivars to arbuscular mycorrhizal inoculation in sterilized and non-sterilized soil. J Plant Nutr 41:90-101 (2018).</Citation>
</Reference>
<Reference>
<Citation>Lekberg Y and Helgason T, In situ mycorrhizal function - knowledge gaps and future directions. New Phytol 220:957-962 (2018).</Citation>
</Reference>
<Reference>
<Citation>FAOSTAT. Food and Agriculture Organization of the United Nations. FAOSTAT Online Database (2005). Available: http://www.fao.org/faostat/en/#data/PP [10 June 2019].</Citation>
</Reference>
<Reference>
<Citation>Berta G, Copetta A, Gamalero E, Bona E, Cesaro P, Scarafoni A et al., Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24:161-170 (2014).</Citation>
</Reference>
<Reference>
<Citation>Hernández JLG, Hernández-Montiel LG, Zulueta-Rodríguez R, Cordoba-Matson MV, Ortega-García J, Murillo-Amador B et al., in Effect by Plant Growth Promoting Bacteria (Azospirillum halopraeferens and Klebsiella pneumoniae) on Lipid Value in Seed of the Halophyte Salicornia bigelovii Torr in Sabkha Ecosystems, ed. by Khan M, Boër B, Özturk M, Clüsener-Godt M, Gul B and Breckle SW. Springer, Cham, pp. 397-403 (2016).</Citation>
</Reference>
<Reference>
<Citation>Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A et al., Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1-11 (2017).</Citation>
</Reference>
<Reference>
<Citation>Wu QS, Xia RX and Zou YN, Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Europ J Soil Biol 44:122-128 (2008).</Citation>
</Reference>
<Reference>
<Citation>Oliveira RS, Castro PML, Dodd JC and Vosátka M, Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462-1470 (2005).</Citation>
</Reference>
<Reference>
<Citation>Lehmann A, Veresoglou SD, Leifheit EF and Rillig MC, Arbuscular mycorrhizal influence on zinc nutrition in crop plants e a meta-analysis. Soil Biol Biochem 69:123-131 (2014).</Citation>
</Reference>
<Reference>
<Citation>Lehmann A and Rillig MC, Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-a meta-analysis. Soil Biol Biochem 81:147-158 (2015).</Citation>
</Reference>
<Reference>
<Citation>Lehmann J and Kleber M, The contentious nature of soil organic matter. Nature 528:60-68 (2015).</Citation>
</Reference>
<Reference>
<Citation>Marulanda A, Barea JM and Azcón R, Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments. Mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115-124 (2009).</Citation>
</Reference>
<Reference>
<Citation>Koch AM, Antunes PM, Barto EK, Cipollini D, Mummey DL and Klironomos JN, The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biol Invasions 13:1627-1639 (2011).</Citation>
</Reference>
<Reference>
<Citation>Knegt B, Jansa J, Franken O, Engelmoer DJ, Werner GD, Bücking H et al., Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol 20:233-240 (2016).</Citation>
</Reference>
<Reference>
<Citation>Pearson JN, Abbott LK and Jasper DA, Mediation of competition between colonizing VA mycorrhizal fungi by the host plant. New Phytol 123:93-98 (1993).</Citation>
</Reference>
<Reference>
<Citation>Werner GD and Kiers ET, Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515-1524 (2015).</Citation>
</Reference>
<Reference>
<Citation>Bever JD, Richardson SC, Lawrence BM, Holmes J and Watson M, Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13-21 (2009).</Citation>
</Reference>
<Reference>
<Citation>Janoušková M, Krak K, Vosátka M, Püschel D and Štorchová H, Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS One 12:e0181525 (2017).</Citation>
</Reference>
<Reference>
<Citation>Haas D and Défago G, Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307-331 (2005).</Citation>
</Reference>
<Reference>
<Citation>Landa BB, Mavrodi DM, Thomashow LS and Weller DM, Interactions between strains of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathology 93:982-994 (2003).</Citation>
</Reference>
<Reference>
<Citation>Rosas SB, Avanzini G, Carlier E, Pasluosta C, Pastor N and Rovera M, Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802-1806 (2009).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Portugal</li>
<li>République tchèque</li>
</country>
</list>
<tree>
<country name="Portugal">
<noRegion>
<name sortKey="Rocha, Ines" sort="Rocha, Ines" uniqKey="Rocha I" first="Inês" last="Rocha">Inês Rocha</name>
</noRegion>
<name sortKey="Freitas, Helena" sort="Freitas, Helena" uniqKey="Freitas H" first="Helena" last="Freitas">Helena Freitas</name>
<name sortKey="Ma, Ying" sort="Ma, Ying" uniqKey="Ma Y" first="Ying" last="Ma">Ying Ma</name>
<name sortKey="Oliveira, Rui S" sort="Oliveira, Rui S" uniqKey="Oliveira R" first="Rui S" last="Oliveira">Rui S. Oliveira</name>
<name sortKey="Pereira, Graca" sort="Pereira, Graca" uniqKey="Pereira G" first="Graça" last="Pereira">Graça Pereira</name>
<name sortKey="Souza Alonso, Pablo" sort="Souza Alonso, Pablo" uniqKey="Souza Alonso P" first="Pablo" last="Souza-Alonso">Pablo Souza-Alonso</name>
</country>
<country name="République tchèque">
<noRegion>
<name sortKey="Vosatka, Miroslav" sort="Vosatka, Miroslav" uniqKey="Vosatka M" first="Miroslav" last="Vosátka">Miroslav Vosátka</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MycorrhizaeV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000014 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000014 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MycorrhizaeV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31667839
   |texte=   Using microbial seed coating for improving cowpea productivity under a low-input agricultural system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31667839" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MycorrhizaeV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:34:48 2020. Site generation: Wed Nov 18 15:41:10 2020